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ABSTRACT
The present paper contains properties of some Jacobi series having polar singularities.
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Let  α  and  β  be a complex numbers such that   α ,  β   and  1α β+ +  are not  equal to  

–1,  –2,  . . . . The polynomials +∞
=0

),( )}({ nn zP βα  defined by equalities
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where C is the complex plane and 2 1( , , ; )F a b c ζ  is  Gauss hypergeometric function, are called 

Jacobi polynomials with parameters α  and β. The functions  +∞
=0

),( )}({ nn zQ βα  defined by equalities 
[1, Chapter I, (5.17)]
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are called Jacobi associated functions.
If α , β  and n are fixed then from (1) it follows that
(2) ( , ) 1| ( ) | (| | )n

nQ z O zα β − −=     | |z → +∞ .
Let  )(zω  is that  inverse of  Zhukovsky function in the region  G   for which 1|)(| >zω . 

Then in the region G the Jacobi polynomials and Jacobi associated functions have respectively the 
representations )1( ≥n [1, Chapter III, (1.9), (1.30)]
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where 0)(),( ≠zP βα ,  0)(),( ≠zQ βα ,  +∞
=1

),( )}({ nn zp βα  and +∞
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),( )}({ nn zq βα  are holomorhpic 
functions in the region G.
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βα  uniformly  on  every 
compact subset of  G.

The series of  kind
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then the series (4)  is absolutely uniformly convergent  on every compact  subset  of  region 

∈= zrE {)(  C }|1||1|: 1−+<−++ rrzz   and divergent in C\ )(rE  [1, (IV.1.1), (b)].

Theorem 1.[1, (V.1.2)]  Let α  and β  be a complex numbers such that  α , β   and 1α β+ +  
are not equal to –1,  –2,  . . .  and 1>R . If )(zf  is a complex function holomorphic in the region

)(RE , then )(zf  is representable in )(RE  by a series of  kind (1), i.e. 
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Theorem  2.  Suppose  that   , , 1 1, 2, . . . ,α β α β+ + ≠ − −  +∞<< R1 and   ( )f z  is   a 
meromorphic  function  in  C. Moreover  let  ( )f z  have  only  simple  poles   at  the   points 

1 2, , . . ., ( )mz z z E R∉  and 
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Proof.  Let   | ( ) | ( 1, 2, . . ., )k kr w z k m= =  and  1 2 . . . mr r r≤ ≤ ≤  .   Obviously 1r R= .  Let 
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From (2) and (7) it follows that
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Since 1 2, , . . ., mz z z  are simple poles of ( )f z  and ( , ) ( )nQ zα β  is a holomorphic function in G we 
get that
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So we get that 
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Using this equality and (5) we come to the equality (8) and thus Theorem 2 is proved.
Now we consider a corollary of  Theorem 2.
Let us recall that [1, Appendix, (1.14)]
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where u and v are arbitrary complex number. Using this asymptotic formula it is easy to prove 
that
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Using this asymptotic formula, asymptotic formula (9) and representation (8) we get that  
(10) 1/2| | ( ),n

na R O n n= → +∞ .
Finally we formulate a statement for Jacobi series whose coefficients  satisfy this asymptotic 

formula.
Theorem 3. Suppose that  , , 1 1, 2, . . .α β α β+ + ≠ − −  and +∞<< R1 . Let the coefficients 

0{ }n na +∞
=  of  Jacobi series (4) satisfy the condition (10)  and ( )f z  is the sum of  (4) in ( )E R . Then 

every pole of ( )f z  on the ellipse ( )Rγ  is simple.
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