ON SOME JACOBI SERIES HAVING POLAR SINGULARITIES

Georgi Boychev

6000 Stara Zagora, Bulgaria e-mail: <u>GBoychev@hotmail.com</u>

ABSTRACT

The present paper contains properties of some Jacobi series having polar singularities. 2000 Math.Subj.Classification codes: 33C45, 40G05

Key Words: Jacobi polynomials, Jacobi series

Let α and β be a complex numbers such that α , β and $\alpha+\beta+1$ are not equal to $-1, -2, \ldots$ The polynomials $\{P_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ defined by equalities

$$P_n^{(\alpha,\beta)}(z) = \binom{n+\alpha}{n} {}_{2}F_1(-n, n+\alpha+\beta+1, \alpha+1; \frac{1-z}{2}), n=0, 1, 2, \dots; z \in \mathbb{C},$$

where **C** is the complex plane and ${}_2F_1(a,b,c;\zeta)$ is Gauss hypergeometric function, are called Jacobi polynomials with parameters α and β . The functions $\{Q_n^{(\alpha,\beta)}(z)\}_{n=0}^{+\infty}$ defined by equalities [1, Chapter I, (5.17)]

(1)
$$Q_n^{(\alpha,\beta)}(z) =$$

$$\frac{2(n+\alpha+\beta+1)\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(2n+\alpha+\beta+2)(z-1)^{n+1}} {}_{2}F_{1}(n+1, n+\alpha+1, 2n+\alpha+\beta+1; \frac{2}{1-z}),$$

$$n = 0, 1, 2, \dots; z \in G = \mathbb{C} \setminus [-1, 1],$$

are called Jacobi associated functions.

If α , β and n are fixed then from (1) it follows that

(2)
$$|Q_n^{(\alpha,\beta)}(z)| = O(|z|^{-n-1}) \quad |z| \to +\infty.$$

Let $\alpha(z)$ is that inverse of Zhukovsky function in the region G for which $|\alpha(z)| > 1$. Then in the region G the Jacobi polynomials and Jacobi associated functions have respectively the representations $(n \ge 1)$ [1, Chapter III, (1.9), (1.30)]

$$P_n^{(\alpha,\beta)}(z) = P^{(\alpha,\beta)}(z)n^{-\frac{1}{2}}[\omega(z)]^n \{1 + p_n^{(\alpha,\beta)}(z)\}$$

and

(3)
$$Q_n^{(\alpha,\beta)}(z) = Q^{(\alpha,\beta)}(z)n^{-\frac{1}{2}}[\omega(z)]^{-n-1} \{1 + q_n^{(\alpha,\beta)}(z)\}$$

where $P^{(\alpha,\beta)}(z) \neq 0$, $Q^{(\alpha,\beta)}(z) \neq 0$, $\{p_n^{(\alpha,\beta)}(z)\}_{n=1}^{+\infty}$ and $\{q_n^{(\alpha,\beta)}(z)\}_{n=1}^{+\infty}$ are holomorhpic functions in the region G.

If $n \to +\infty$ then $p_n^{(\alpha,\beta)}(z) = O(n^{-1})$ and $q_n^{(\alpha,\beta)}(z) = O(n^{-1})$ uniformly on every compact subset of G.

The series of kind

(4)
$$\sum_{n=0}^{+\infty} a_n P_n^{(\alpha,\beta)}(z)$$

is called Jacobi series.

If

$$0 < r^{-1} = \lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}} < 1$$

then the series (4) is absolutely uniformly convergent on every compact subset of region $[\![(r) : \{ z \in \mathbb{Z} | z + 1 | + | z - 1 | \langle r + r^{-1} \} \}]$ and divergent in $\mathbb{C} \setminus \overline{E(r)}$ [1, (IV.1.1), (b)].

Theorem 1.[1, (V.1.2)] Let α and β be a complex numbers such that α , β and $\alpha + \beta + 1$ are not equal to -1, -2, ... and R > 1. If f(z) is a complex function holomorphic in the region E(R), then f(z) is representable in E(R) by a series of kind (1), i.e.

$$f(z) = \sum_{n=0}^{+\infty} a_n P_n^{(\alpha,\beta)}(z), \ z \in E(R)$$

with coefficients

(5)
$$a_n = \frac{1}{2\pi i I_n^{(\alpha,\beta)}} \int_{\gamma(r)} f(\zeta) Q_n^{(\alpha,\beta)}(\zeta) d\zeta, \ 1 < r < R, \ n = 0, 1, 2, \dots,$$

where

(6)
$$I_n^{(\alpha,\beta)} = \begin{cases} \frac{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}, & n=0\\ \frac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}, & n \ge 1 \end{cases}$$

Theorem 2. Suppose that α , β , $\alpha + \beta + 1 \neq -1, -2, \ldots$, $1 < R < +\infty$ and f(z) is a meromorphic function in \mathbb{C} . Moreover let f(z) have only simple poles at the points $z_1, z_2, \ldots, z_m \notin E(R)$ and

(7)
$$\int_{\gamma(\sigma)} |f(z)| ds = O(1) \ (\sigma > 1, \ \sigma \to +\infty).$$

Then

(8)
$$a_n = -\frac{1}{I_n^{(\alpha,\beta)}} \sum_{k=1}^m A_k Q_n^{(\alpha,\beta)}(z_k) ,$$

where $A_k = \underset{\zeta = z_k}{Res} f(\zeta)(k = 1, 2, ..., m)$ and n is fixed.

Proof. Let $r_k = |w(z_k)| \ (k=1,2,\ldots,m)$ and $r_1 \le r_2 \le \ldots \le r_m$. Obviously $r_1 = R$. Let $2\rho > \max_{1 \le k \le m} (r_k + r_k^{-1})$ and 1 < r < R. Using residue theorem we get

$$\int_{|\zeta|=\rho} f(\zeta)Q_n^{(\alpha,\beta)}(\zeta)d\zeta - \int_{\gamma(r)} f(\zeta)Q_n^{(\alpha,\beta)}(\zeta)d\zeta = 2\pi i \sum_{k=1}^m \mathop{Res}_{\zeta=z_k} \{f(\zeta)Q_n^{(\alpha,\beta)}(\zeta)\}.$$

From (2) and (7) it follows that

$$\lim_{\rho \to +\infty} \int_{|\zeta| = \rho} f(\zeta) Q_n^{(\alpha,\beta)}(\zeta) d\zeta = 0$$

Then

$$\int_{\gamma(r)} f(\zeta) Q_n^{(\alpha,\beta)}(\zeta) d\zeta = -2\pi i \sum_{k=1}^m \underset{\zeta=z_k}{Res} \left\{ f(\zeta) Q_n^{(\alpha,\beta)}(\zeta) \right\}.$$

Since $z_1, z_2, ..., z_m$ are simple poles of f(z) and $Q_n^{(\alpha,\beta)}(z)$ is a holomorphic function in G we get that

$$\operatorname{Res}_{\zeta=z_{k}} \{ f(\zeta) Q_{n}^{(\alpha,\beta)}(\zeta) \} = A_{k} Q_{n}^{(\alpha,\beta)}(z_{k}), \quad k = 1, 2, ..., m.$$

So we get that

$$\int_{\gamma(r)} f(\zeta) Q_n^{(\alpha,\beta)}(\zeta) d\zeta = -2\pi i \sum_{k=1}^m A_k Q_n^{(\alpha,\beta)}(z_k).$$

Using this equality and (5) we come to the equality (8) and thus Theorem 2 is proved. Now we consider a corollary of Theorem 2.

Let us recall that [1, Appendix, (1.14)]

$$\frac{\Gamma(n+u)}{\Gamma(n+v)} = n^{u-v} \{1 + O(\frac{1}{n})\}, \quad n \to +\infty,$$

where u and v are arbitrary complex number. Using this asymptotic formula it is easy to prove that

(9)
$$I_n^{(\alpha,\beta)} = O(\frac{1}{n}), \quad n \to +\infty.$$

Using (3) we obtain that

$$|\sum_{k=1}^{m} A_k Q_n^{(\alpha,\beta)}(z_k)| = O\{n^{-1/2} \sum_{k=1}^{m} r_k^{-n}\}, \quad n \to +\infty.$$

Since $1 < R = r_1 \le r_2 \le \ldots \le r_m$ then

$$\sum_{k=1}^{m} r_k^{-n} \le R^{-n} \sum_{k=1}^{m} \left(\frac{R}{r_k} \right)^n \le m R^{-n} .$$

Obviously

$$|\sum_{k=1}^{m} A_k Q_n^{(\alpha,\beta)}(z_k)| = O\{n^{-1/2} R^{-n}\}, \quad n \to +\infty.$$

Using this asymptotic formula, asymptotic formula (9) and representation (8) we get that (10) $|a_n R^n| = O(n^{1/2}), n \to +\infty$.

Finally we formulate a statement for Jacobi series whose coefficients satisfy this asymptotic formula.

Theorem 3. Suppose that α , β , $\alpha + \beta + 1 \neq -1$, -2, ... and $1 < R < +\infty$. Let the coefficients $\{a_n\}_{n=0}^{+\infty}$ of Jacobi series (4) satisfy the condition (10) and f(z) is the sum of (4) in E(R). Then every pole of f(z) on the ellipse $\gamma(R)$ is simple.

References

1. P. Russev. Classical Orthogonal Polynomials and Their Associated Functions in Complex Plane, Sofia, 2005