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ABSTRACT
The present paper contains properties of some Jacobi series having polar singularities.
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Let @ and B be a complex numbers such that @, 8 and a+[+1 are not equal to
—1, =2, . ... The polynomials {P"? ()}, defined by equalities

h+a -
Pn(a’ﬁ)(z):D F(-n,n+ta+ B+ a+l; ITZ), n=0,1,2,...; zOC
o7 [

9

where C is the complex plane and , F;(a,b,c; {) is Gauss hypergeometric function, are called

Jacobi polynomials with parameters @ and /5. The functions {Q'* P ()} =, defined by equalities
[1, Chapter I, (5.17)]

O 0" (2)=

2nratBrl(nta +1)|'(n:,8+1) SJHm+Lnta+,2n+a+B+1; L)’
FQn+a+pB+2)(z-1)" 1-z
n=0,12,...; zOG = C\ [_], 1]’

are called Jacobi associated functions.

If @, B and n are fixed then from (1) it follows that

2) 0P ()=0( 2"y [z]— +oo,

Let <®z) is that inverse of Zhukovsky function in the region G for which | €0z) [=1.

Then in the region G the Jacobi polynomials and Jacobi associated functions have respectively the
representations (72 =1) [1, Chapter 111, (1.9), (1.30)]

PP(2) = PP (2)n 2[al2)]" {1+ p\*P (2)} >
and

1
3) 0P (2) =P (2)n *[e2)] " {l +¢q (P (2)}
where PP (z)#0, QP (z) #0, {p P (2)} = and {g'"? (2)} =, are holomorhpic
functions in the region G.
If n - +0then p?()=0n") and ¢*?(z)=O0(1") uniformly on every

compact subset of G.
The series of kind

4 a PP (z
(4) Z A, 7(2)
1s called Jacobi series.
If
1
0<r'= liersup la, | "<I,
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then the series (4) is absolutely uniformly convergent on every compact subset of region
E(r)i {Z{ Czt1|4|z-1<rt r'l} and divergent in C\ £ [1, (IV.1.1), (b)].

Theorem 1.[1, (V.1.2)] Let @ and B be a complex numbers such that @, B and O + [ +1
are not equal to -1, -2, ... and R >1.If /(=) is a complex function holomorphic in the region
E(R) , then /(=) isrepresentable in £(R) by a series of kind (1), i.e.

F(2)=S a, PP (2), zOER)

with coefficients

(5) anzwff(C)Qf,a’ﬂ)(C)dC, 1<r<R, n=0,1,2,...
no oY)
where
R (a + DM (B+1) 120
M(a+pB+2 ’

O 2P T(n+a+D)M(n+B+1)
Hon+a+B+DF(n+ DM (n+a+p+1)’
Theorem 2. Suppose that a,B,a+B+1#-1,-2,..., |<R<+oand f(z) is a
meromorphic function in C. Moreover let f(z) have only simple poles at the points
Zyy Zyy ooy Z,, JE(R) and

(7) [1/@ds=00) (0>1, 0 — +m)
y(o)
Then
o
® e 2 AT,

where 4i = §fzf FEk=12,....m) and n is fixed.
Proof. Let 7 =(w(z)|[(k=1,2,...,m) and r,<rn<...<r, . Obviously 5, =R. Let
2p> ?Slkg( n*r) and 1<r<R. Using residue theorem we get

J SO0 [ Q0@ =2 5 Res (/D)0
T=p =0

y(r)

From (2) and (7) it follows that
jim, J f(@0P(§)d =0,
I<I=p

Then
[ 107 (@)ag =2my Res FQ)0 Q).
yir) =
Since z,, 2,5 - - -» Z,, are simple poles of f(z) and Q0'"*(2) is a holomorphic function in G we
get that

Res{ /(DO F(Q)} =40 z) | k=1,2,..m.
So we get that
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[ 1@ @)dl =2y 40"7(z,),
y(r) =

Using this equality and (5) we come to the equality (8) and thus Theorem 2 is proved.
Now we consider a corollary of Theorem 2.

Let us recall that  [1, Appendix, (1.14)]

+
Fntu) _ n {1 +O(1)}, n - +oo,
M(n+v) n
where u and v are arbitrary complex number. Using this asymptotic formula it is easy to prove
that

©) 199 20(), n - +o.
n

Using (3) we obtain that

m

| Aijla,ﬂ)(zk) = 0{77_1/2 Z' r'y, n - too,

Since |<R=r<r<...<r, then

m o o m DR d -
Zrk < ([ SmR
= =1 [ O

Obviously
| ;AkQ;“ﬁ>(zk) =0{n "R}, n - +oo,

Using this asymptotic formula, asymptotic formula (9) and representation (8) we get that

(10) la,R" |=0(n'"?), n - +oo.

Finally we formulate a statement for Jacobi series whose coefficients satisfy this asymptotic
formula.

Theorem 3. Suppose that @, B, a+[B+1#-1,-2,... and 1 <R < +o0. Let the coefficients
{a }'2, of Jacobi series (4) satisfy the condition (10) and f(z) is the sum of (4) in E(R). Then
every pole of f(2) on the ellipse Y(R) is simple.
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